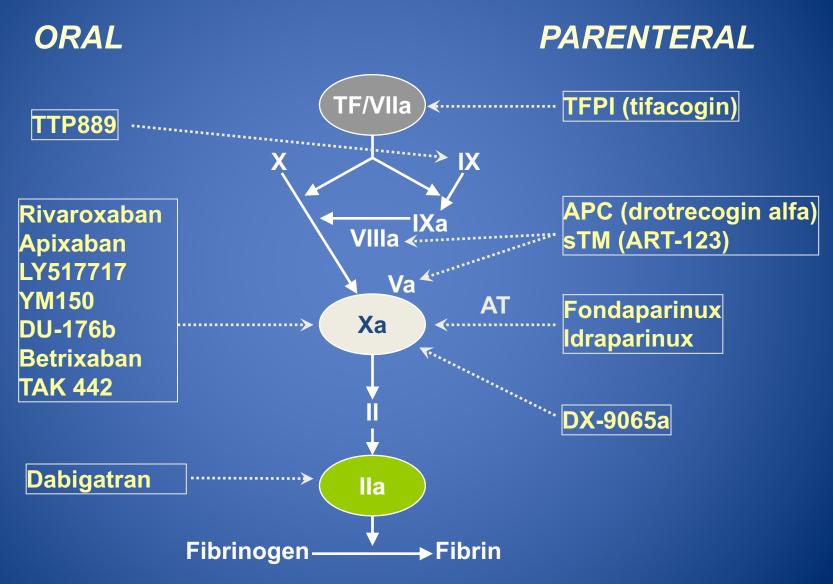
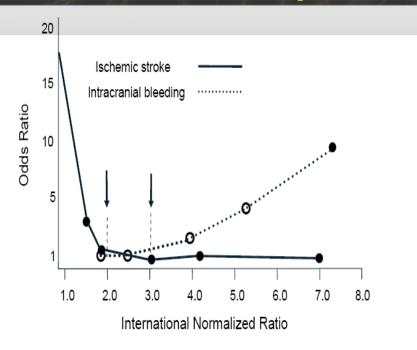

Management of antithrombotic associated bleeding


Dr Karen Breen

Consultant Haematologist
Guys and St Thomas' NHS Foundation Trust

History of anticoagulant therapy

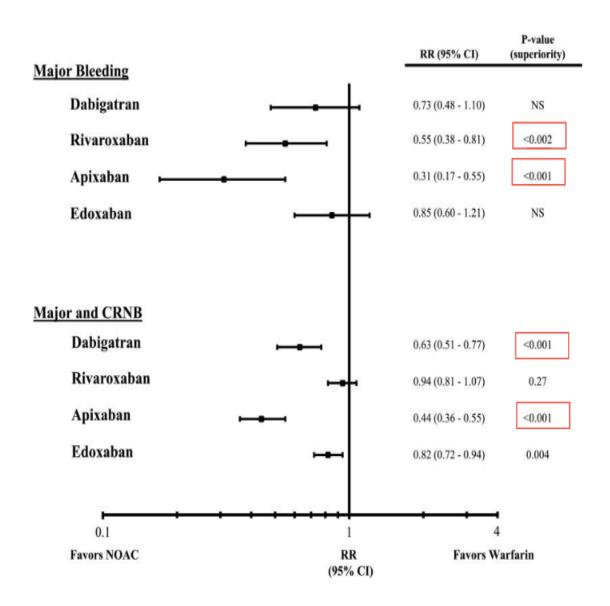

Anticoagulants

Adapted from Weitz & Bates, J Thromb Haemost 2007

Prevention of Atrial Fibrillation-Related Stroke

Need for Intense Monitoring With OAC

Narrow therapeutic index: INR < 2.0 = higher risk for stroke


INR > 3.0 = higher risk for bleeding

Unpredictable INR (food/drug interactions, low specificity)

heart org. Medscape CME Cardiology

Hazard ratios (HR) for major bleeding or major plus clinically relevant nonmajor bleeding (CRNB) in phase 3 trials comparing NOACs with conventional therapy for acute VTE treatment

These DOACs have never been compared directly with each other

"Dramatic" Increase In Bleeding Accompanies Addition Of Oral Anticoagulant Therapy In ACS

SPECIALTIES & TOPICS ~ FOR AUTHORS ~ HOME ARTICLES & MULTIMEDIA ~ ISSUES * CME > CORRESPONDENCE Bleeding Risk with Dabigatran in the Frail Elderly N Engl J Med 2012; 366:864-866 | March 1, 2012 | DOI: 10.1056/NEJMc1112874 Share: F 🐸 🍱 in 🖶 Article Citing Articles (46) To the Editor: Since July 1, 2011, the thrombin inhibitor dabigatran has been available in New Zealand for stroke prevention in patients with atrial fibrillation. There are no restrictions on prescribing, and access is free to patients through government funding. Approximately 7000 patients started treatment in the first 2 months.

Actual bleeding rates

- FDA Drug Safety Communication Safety review of post-market reports of serious bleeding events with the anticoagulant Pradaxa (dabigatran etexilate mesylate)
- European Medicines Agency

Real World Studies / Data

Phase 4 trials

Registries

Post Authorisation safety/efficacy studies

Prospective/Retrospective Observational studies

Pharmco-economic studies

How well does the drug perform in the real world?

Outcomes as expected from clinical trials?

Is the drug being used as recommended?

Eg indications, dose, duration

Compliance issues?

Improved QOL?

Healthcare costs?

Real-life studies have their inherent weaknesses:

- non-controlled and heterogeneous patient groups
- Physicians' prescribing bias in dosing and choice of patients
- uncontrolled influence of non-compliance, other concomitant medications and co-morbidities

BUT provide a wealth of data and insight into how DOACs are used in the real world

Management of bleeding

Best Strategy – PREVENT bleeds

- Know your Drug and Bleeding risks;
 - Patient selection
 - Dose adjustment

Know what to do when bleeding occurs

Bleeding risk scores

CHA ₂ DS ₂ -VAS _C	Score	HAS-BLED	Score
Congestive heart failure/LV	1	Hypertension i.e. uncontrolled BP	1
dysfunction			
<u>H</u> ypertension	1	Abnormal renal/liver function	1 or 2
<u>A</u> ged ≥75 years	2	Stroke	1
<u>D</u> iabetes mellitus	1	Bleeding tendency or predisposition	1
Stroke/TIA/TE	2	Labile INR	1
$\overline{\underline{V}}$ ascular disease [prior MI, PAD, or	1	Age (e.g. >65)	1
aortic plaque]			
<u>Ag</u> ed 65-74 years	1	Drugs (e.g. concomitant aspirin or NSAIDSs) or alcohol	1
S ex category [i.e. female gender]	1		

Assessing bleeding risk

- Older patients have a 2-fold increased risk of bleeding
- relative risk of intracranial hemorrhage was 2.5 in patients aged >85 years compared with patients 70–74 years old¹
- Comorbidity (such as mild renal insufficiency, hepatic dysfunction, or diabetes) increased risk of bleeding by about 2.5
- Combined use of anticoagulant and antiplatelets increased GI haemorrhage²

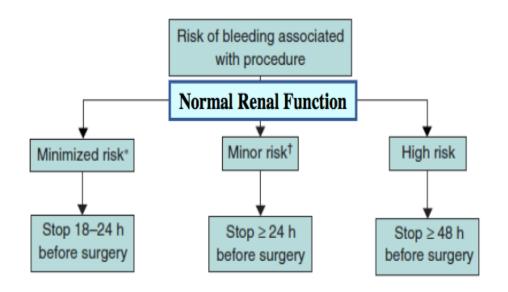
- 1. Hutton et al, Drugs aging, 1999
- 2. Hallas et al. BMJ. 2006:

Choosing an anticoagulant

Consideration	Preferred drug	Rather than
CrCL < 15 ml/min	Warfarin	
CrCL 15 - 29 ml/min	Warfarin	Apixaban, rivaroxaban, edoxaban
CrCL 30 - 50 ml/min	Warfarin, rivaroxaban, apixaban, edoxaban	Dabigatran
Liver dysfunction	Warfarin	Apixaban, rivaroxaban, dabigatran
Previous intracranial bleed	Apixaban, rivaroxaban, edoxaban, dabigatran	Warfarin
Previous GI bleed	Apixaban, edoxaban, warfarin	Dabigatran, rivaroxaban
ACS	Rivaroxaban, apixaban, edoxaban, warfarin	Dabigatran
Dyspepsia	Rivaroxaban, apixaban,edoxaban, warfarin	Dabigatran
Poor compliance	Warfarin	Apixaban, rivaroxaban, edoxaban, dabigatran

161(6):755-6.

Drug interactions


- <u>Dabigatran</u> verapamil and amiodarone: increased plasma concentration of dabigatran
 - carbemazepine and rifampicin: decreased plasma concentration of dabigatran
- Rivaroxaban CYP3A4 inhibitors e.g. azoles, rifampicin and P-glycoprotein inhibitors
 e.g.Digoxin,
 Ritonavir: may increase plasma concentration
- Apixaban as Rivaroxaban
- Edoxaban as Rivaroxaban

Switching to a DOAC

Conversion	Start times recommenced
From VKAs to NOAC	Discontinue VKA and start DOAC when INR<2
From NOAC to parenteral	Start parenteral anticoagulant 12 h after last dose of DOAC
From parenteral to NOAC	Start DOAC at the same time or up to 2 hours before the next s/c dose. For continuous infusions, start DOAC at the time of discontinuation of the continuous infusion.
From NOAC to VKAs	Start times for VKAs are based on renal function

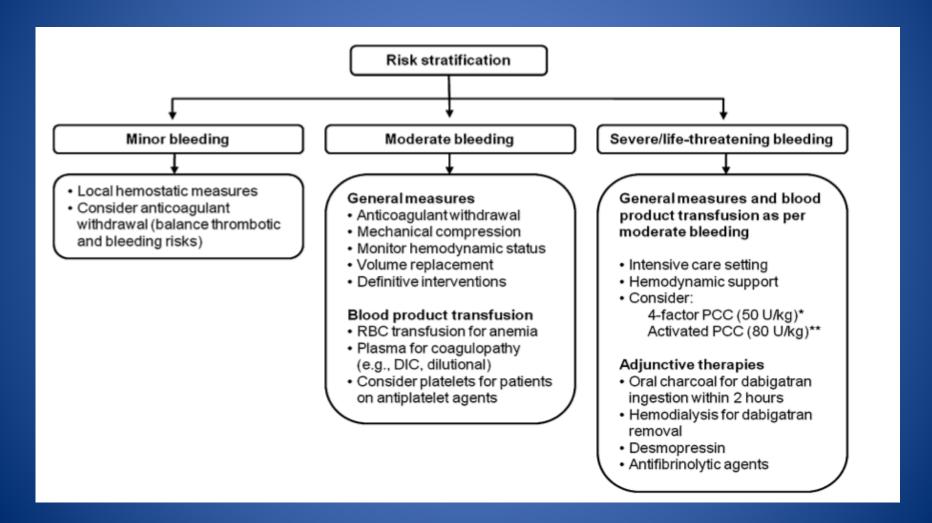
Peri-surgery Management of **DOACs**

Check Renal Function before surgery

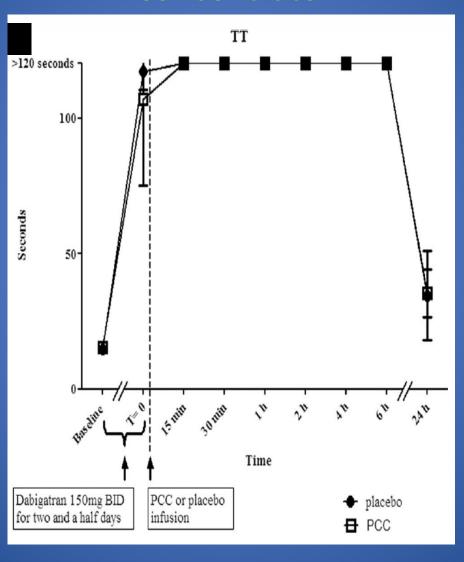
Creatinine	Suggested interruption (h)			
clearance (ml/min)	Risk of bleeding	Rivaroxaban	Apixaban	Dabigatran
≥ 80	Low	≥ 24	≥ 24	≥ 24
	High	≥ 48	≥ 48	≥ 48
50-79	Low	≥ 24	≥ 24	≥ 36
	High	≥ 48	≥ 48	≥ 72
30-49	Low	≥ 24	≥ 24	≥ 48
	High	≥ 48	≥ 48	≥ 96
15-29	Low	≥ 36	≥ 36	Not indicated
	High	≥ 48	≥ 48	Not indicated
< 15		No in	dication for an	y agent

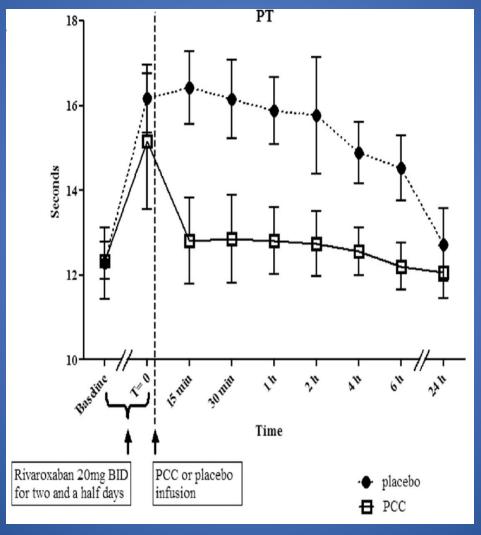
Effects of DOACs on coagulation assays

Measuring the anticoagulant effect of NOACs


	Dabigatran	Apixaban	Edoxaban	Rivaroxaban
Plasma peak	2h after ingestion	1-4h post ingestion	1-2h after ingestion	2-4h after ingestion
Plasma trough	12-24h after ingestion	12-24h after ingestion	12-24h after ingestion	16-24h after ingestion
PT	cannot be used	cannot be used	prolonged but no known relation with bleeding risk	prolonged: may indicate excess bleeding risk but local calibration required
INR	cannot be used	cannot be used	cannot be used	cannot be used
аРТТ	at trough >2x ULN suggests excess bleeding risk	cannot be used	prolonged but no known relation with bleeding risk	cannot be used
dTT	At trough >200ng/ml ≥ 65s: excess bleeding risk	cannot be used	cannot be used	cannot be used
Anti-FXa assays	n/a	no data yet	quantitative; no data on threshold values for bleeding or thrombosis	quantitative; no data on threshold values for bleeding or thrombosis
Ecarin clotting time	at trough >2x ULN: excess bleeding risk	not affected; cannot be used	not affected; cannot be used	not affected; cannot be used

www.escardio.org/EHRA




Management of bleeding

No reversal of the anticoagulant effect of dabigatran by prothrombin complex concentrate

Reversal of the anticoagulant effect of rivaroxaban by prothrombin complex concentrate

Reversal of unfractionated heparin

- Stop the drug
- General measures

- Protamine sulphate (1 mg per 80–100 units UFH)
- Maximum recommended dose of 50 mg protamine
- Timing

Reversal of low molecular weight heparin

- Protamine sulphate (1 mg per 80–100 units UFH)
 - consider second dose

Maximum recommended dose of 50 mg protamine

Timing

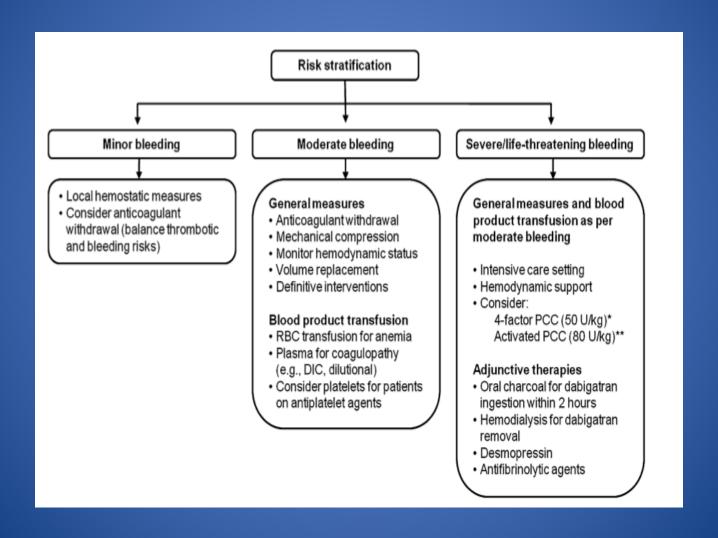
rFVIIa

Reversal of argatroban/danaparoid/fondaprinux

- Stop the drug
- General measures

No specific antidote

Reversal of VKA

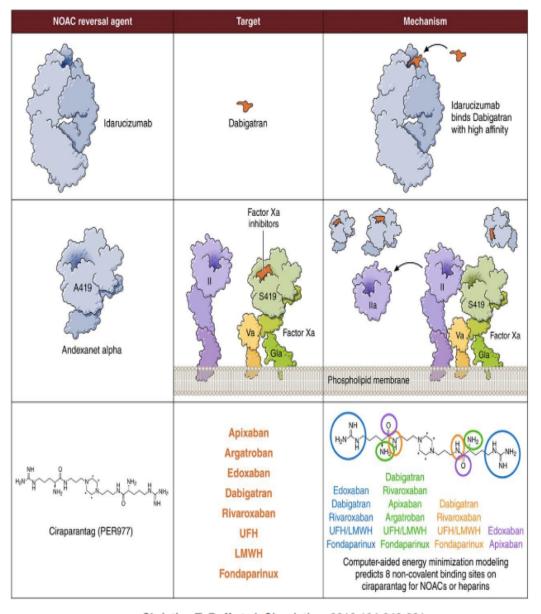

Major bleeding

- 25-50 units of 4 factor PCC
- 5mg Vitamin K IV

Non-major bleeding

- Consider 4 factor PCC
- Vitamin K 1-3mg IV

Reversal of DOACs


Development of antidotes to non vitamin K antagonist oral anticoagulants

	Target	Mechanism of action	Investigation status
Idarucizumab	Dabigatran	Humanized Fab: specifically binds dabigatran (binding affinity ~350 × higher than binding of dabigatran to thrombin)	Bleeding patients and surgical patients ²
Andexanet alfa (PRT064445)	FXa inhibitors	Recombinant human FXa variant: competitive affinity for direct FXa inhibitors	Healthy volunteers ^{3,4}
Aripazine (PER977)	Universal	Synthetic small molecule: charge–charge interactions (heparin); hydrogen bonds (NOACs)	Phase I ⁵

^{3.} Clinicaltrials.gov: NCT02220725;

^{4.} Clinicaltrials.gov: NCT02207725;

^{5.} http://www.perosphere.com/content/news/httpwww.perosphere.comcontentnewsreleases042513.htm accessed January 2015

Idarucizumab (Dabi-Fab) is a humanized Ab fragment that binds to dabigatran, preventing it from binding to thrombin and neutralizing its anticoagulant effect.

Andexanet alfa (And-a) is a modified inactive recombinant FXa that binds circulating FXa inhibitors, allowing native FXa to convert prothrombin to thrombin and restore the coagulation cascade.

Ciraparantag - small synthetic molecule that competitively binds the NOACs, restoring activity of blocked coagulation factors.

Christian T. Ruff et al. Circulation. 2016;134:248-261

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Idarucizumab for Dabigatran Reversal

Charles V. Pollack, Jr., M.D., Paul A. Reilly, Ph.D., John Eikelboom, M.B., B.S., Stephan Glund, Ph.D., Peter Verhamme, M.D., Richard A. Bernstein, M.D., Ph.D., Robert Dubiel, Pharm.D., Menno V. Huisman, M.D., Ph.D., Elaine M. Hylek, M.D., Pieter W. Kamphuisen, M.D., Ph.D., Jörg Kreuzer, M.D., Jerrold H. Levy, M.D., Frank W. Sellke, M.D., Joachim Stangier, Ph.D., Thorsten Steiner, M.D., M.M.E., Bushi Wang, Ph.D., Chak-Wah Kam, M.D., and Jeffrey I. Weitz, M.D.

News Release

<< Back

U.S. FDA Approves Portola Pharmaceuticals' Andexxa®, First and Only Antidote for the Reversal of Factor Xa Inhibitors

- Breakthrough Product is a Major Advance in the Treatment of Patients Hospitalized with Life-Threatening Bleeding -

- Company to Host Conference Call on Friday, May 4, 2018 at 8:30 a.m. ET -

Reversal of anti-platelet associated bleeding

- Stop the drug
- General measures

Consider platelet transfusion

Management of bleeding with antifibrinolytics

Stop infusion of fibrinolytic drugs and other antithrombotic drugs

- Administer intravenous tranexamic acid 1 g tds
- Administer cryoprecipitate or fibrinogen concentrate

Conclusion

Prevention is better than cure

 Management guided by severity of bleed and encompasses drug cessation, general measures and drug specific measures

 Bleeding rates likely to become less of a concern in future with DOACs

Any questions?

